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Abstract. The image systems for the disturbance temperature fields in and outside an isolated ellipsoid driven by
an n-th order ambient field are introduced and their connection to the ellipsoidal harmonics is derived. More
general ambient fields may be handled by superposition of these basic solutions. These result have been used to
derive the Faxen relation for the arbitrary n-th order multipole moment. The explicit expressions for the
temperature fields and the thermal moment tensors for an ellipsoid in linear and quadratic ambient fields are given
to illustrate the method.

1. Introduction

The prediction of the effective transport properties of a two-phase system has been a classic
and important problem [1-3]. For example, the determination of the effective thermal
conductivity of a composite material consisting of spherical inclusions dispersed in a con-
tinuous matrix is well established [4-7]. We present here a solution form suitable for
ellipsoidal inclusions with the goal of providing the microscopic description of the pre-
averaged system. The ellipsoidal geometry is chosen because it embraces a wide class of
nonspherical inclusions, from slender bodies in fiber-enhanced plastic to flat disks in clay
suspensions.

To predict the effective transport property accurately to O(c2), where c is the volume
fraction occupied by the inclusion, the interaction between two particles should be deter-
mined [1, 7, 8]. For nonspherical inclusions, the pair-interaction problem cannot be solved
analytically and a numerical approach is necessary, augmented where available by asymp-
totic solutions. When the test pair are at large separations, the so called method-of-reflection
provides an accurate solution [9-12]. At smaller separations, the method converges too
slowly and an another approach is required. Among these, the boundary collocation method
has gained in popularity in recent years [13-15]. The results of this paper provide the
necessary information for both the method-of-reflections solution and the boundary collo-
cation technique.

The essence of the boundary collocation technique is summarized as follows. One chooses
a set of basis functions that satisfy the governing equation identically. The desired solution
is written as truncated expansion in these basis functions with the coefficients determined by
matching the boundary conditions at chosen points (the collocation points). The end result
is a set of linear equations, the solution of which provides the coefficients and the expansion
solution. The temperature fields derived in the present work form a suitable set of basis

functions for this technique.
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The method-of-reflection was developed by Smoluchowski [16]. It is essentially an iterative
solution of the pair-interaction problem in which the disturbance field produced by one
particle is used to correct the ambient field at the other particle (and so forth). In the usual
terminology, the ambient field of interest is called the incident field and the resulting
disturbance field is called the reflected field. Thus, given an incident field, we need a method
for calculating the reflected field. One approach, which is readily applied to non-spherical
particles, expands the reflected field in a multipole expansion with the moments determined
from the Fax6n laws [17].

In the recent literature, a variety of Fax6n laws has been derived for different physical
problems (velocity problem, temperature problem, etc.), different particle shapes (sphere,
spheroid, ellipsoid), and various multipole moments [7, 8, 18-23]. One intriguing aspect of
the Fax6n relation which is not widely appreciated is the functional link between the Fax6n
relations and the singularity solutions for so called conjugate problems. For example, the
Fax6n law for the thermal dipole and the disturbance field forced by a linear ambient field
possess the same functional form. This duality was first noted by Hinch [24] and a derivation
is given in Kim [25] for rigid particles (or perfect conductors). The proof is more difficult for
the general two-phase problem but has been derived recently by Kim and Lu [26].

The paper is divided as follows. In Section 2, we derive expressions for the temperature
field driven by an n-th order ambient field. In Section 3, we use the duality proof from [26]
to derive the Faxen relations for the n-th order thermal multipole moment. Finally, the
explicit solutions for problems with linear and quadratic ambient fields are presented in
Section 4 to illustrate the ideas presented in Sections 2 and 3.

2. Solution for arbitrary ambient field

We consider a source-free temperature field in and outside an isolated ellipsoid in an ambient
temperature field T (x). We assume that T (x) satisfies the Laplace equation. The
coordinate system is chosen so that the equation for the surface of the ellipsoid is given by

x2 y2 z2

~+ + = 1, a > b > c,

where a, b, c are the three semi-axes of the ellipsoid.
The interior and exterior temperature fields satisfy the Laplace equation and the boundary

conditions are continuity of the temperature and the normal heat flux across the particle
surface. In addition, the exterior temperature field approaches the ambient temperature field
when x is far away from the particle. They may be described in mathematical form as
follows.

Governing equations:

V2 Tout(x) = 0, x E matrix; (2.1a)

V2 Tn (x) = 0, x E particle. (2.lb)
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Boundary conditions:

To,(xs) = Ti,(xs), (2.2a)

kn VT,,,(xs) = k 2n VTin(xs), (2.2b)

To,,(x ) = Too(x) as xl - or, (2.2c)

where k, and k2 are the thermal conductivities of the matrix and the particle respectively, n
is the outward unit vector normal to the particle surface, and x, is a point on the particle
surface.

Our goal is to show that for the n-th order ambient field, Wk,k 2 ... kXkxk2 . . . Xk, the
exterior solution may be written as a simple distribution of singularities,

To,,(x) = TO(x) + E L(n - f2m)E 4rk,-)I+I- x'I dA (x').
m=0 4kIx

The details, including the region of distribution E, the density function f(,) and the type of
singularities employed are discussed below.

We start with ellipsoidal coordinates and the ellipsoidal harmonics. The ellipsoidal coor-
dinates (, , v) are the solutions of the cubic equation

x2 y2 2

X2 + + k 1 (2.3)

for fixed values of (x, y, z), where

k2 = a2 _ c2, h2 = a2 _ b2 .

The three roots of (2.3) are chosen so that

o0 > Q2 k2, k2
> 2 ¢ h2 , h2 > v2 > 0

The three surfaces, e = constant, y = constant and v = constant, consisting of confocal
ellipsoids, hyperboloids of one sheet and hyperboloids of two sheets respectively, form a
triply-orthogonal coordinate system. The transformation between the Cartesian and the
ellipsoidal coordinates is given by

Q22 v2h =
h2k2 ,

(e2 - h2 )( 2 _ h2 )(h2 _ v2)

h2(k 2 _ h2)

z2 (e2 - k2 ) (k2 _ 2 )(k 2 _ 2)
k2(k2 _ h2 )
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The internal ellipsoidal harmonic E(e)EY,()Em(v) is regular at the origin and the
external ellipsoidal harmonic Fm(e)E m(#)E (v) is regular at infinity [27]. Here, Em denotes
the Lam6 function of the first kind and Fm is the Lam6 function of the second kind, of degree
n and order m, where n and m are nonnegative and positive integers respectively with
n < 2n + 1. The internal ellipsoidal harmonic is a polynomial in x, thus we can rewrite a
polynomial in x of degree n in terms of linear combinations of internal ellipsoidal harmonics.

Our approach for an arbitrary ambient field problem is based on the expansion of the
arbitrary ambient field in a Taylor series about a reference point (usually the center of the
particle). The governing equations and boundary conditions are linear so that the solution
for a linear combination of ambient fields is the sum of the solutions for each sub-problem.
Thus we need only solve the sub-problem involving the n-th order ambient field. Such a field
can always be expressed in terms of the internal ellipsoidal harmonics. The exterior solution
then can be written in terms of the external harmonics with the same "angular dependence",
i.e.,

n 2+1 n 
21
+1

T0o,(x) = E E AmE(e)Em(ju)E,(v) + B F (e)E(p)E 3m(v),
=1 m=l /=1 m=l

n 2/+1 n 21+ 1

Tin(x) = Y Am Elm (e)Er (Y)E )() + C )E (V)
1=1 m=l /=1 m=l

where the first terms on the RHS are just the ambient field, while the second terms are the
exterior and interior disturbance fields generated by the presence of the ellipsoid. The Am's
may be determined by rewriting the given ambient temperature field into a linear combi-
nation of the internal ellipsoidal harmonics. Thus there remain only two sets of unknown
coefficients, Br's and Cm's, which may be determined through the application of the two
boundary conditions, (2.2a) and (2.2b). The result is:

ATEm(Q))(dE()/d)(k 2 - k) 
kl E (e) (dFm(Q)/dQ) - k2Fm(Qe)(dE(Q)/d) = (2.4a)

Cm _ AmnF[m(e)(dErm ()/de)(k 2 - k,) (2.4b)
k, Elm ()(dF (e)ld) - k2Fm (e)(dEm (e)/de) oa'

We note that, for an n-th order field (say Wk,k 2 .. kXk, . .. xkn), the solution involves only
ellipsoidal harmonics of degree n, n - 2, . . . down to 1(0) if n is odd (even).

According to the theorems by Miloh [28], there are two kinds of integral representations
for exterior ellipsoidal harmonic depending on whether the harmonic is even or odd in z. It
can be shown that the external ellipsoidal harmonic, when even in z, contains terms like

(x')(y')dq-l(x') dA(x') with c + d = n, n - 2, . . . 1(0), if n is odd(even).
Ix - x'I

(2.5)
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When odd in z, the ellipsoidal harmonic contains the following terms:

a (x')e(y')-q(x') dA(x') with e + f = n - 1, n - 3 .. 0(1), if n is odd(even).
z Ix - X'[

(2.6)

The e + f in the above equation is even (odd) if n is odd (even), and the function q(x', y')
is defined as

x2 '21 1/ 2q(x', y') = 1- - -

with

aE = (a2 - c2)' 2 , bE = (b2 _ c2)1- 2

E(x', y'), the integration domain, is the interior of the fundamental ellipse, which is the
degenerate elliptical disk in a family of confocal ellipsoids, defined as follows:

x12 y /
- + - = 1, ' = 0.

It should be mentioned that q-' is the requisite charge distribution over the fundamental
ellipse which generates ellipsoidal equipotential surfaces. From here on, the functional
dependency of q and dA on x' will be dropped unless otherwise noted.

We now derive an alternate form for terms in (2.5) and (2.6) without the x' and y'
appearing in the integrands. Without loss of generality, we examine the following term:

(x')q t dA. (2.7)Ix - x' (2.7)

As shown in Appendix 1, repeated integration by parts of the above expression generates
terms of the form

qSd+t 2
qS+t+2 dA a 4 , dA if s is even

I X - X I xA -x XI- fd E I X iX I

e1 q,,3+l 03 qs*t+3 as q't
0ax' i - x'--dA, Ix - x da, 0x I x, dA if s is odd.

The more general case (2.5) follows in an analogous manner but with mixed derivatives. The
terms containing derivatives with respect to z may be generated from (2.6) and from the
following relation

an-2 a2 qn an- 2 /2 02 \ , q

aXkl .. aXk 2 X - aXk-2 dA,
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where the fact that E(qn /l x - x' )dA is harmonic (see Appendix 2) has been used. Thus for
an n-th order ambient field, the solution contains contributions from external ellipsoidal
harmonics of degree n, n - 2 ... and, for each harmonic, there are terms like those in (2.8)
with t = - 1 and s = n, n - 2, .. . respectively.

We digress here to introduce a transformation relation established in [29] between the
singularity integral and the external ellipsoidal harmonic. Define

H. +x I A + X ) X (2.9a)Hn(x) - 2n + 1 I x - x'I-(2---

and

(Y22 y2 2d 29fT ' + _____ _____ 2G. (x) = f: GT+ t) (a +¢ t) + ( c2 + t) A(2.9b)

where

2n - 1q 2 -3

27raEbE

A(t) = [(a2 + t)(b2 + t)(c2 + t)]12

The relation is

H,(x) (22 )n (n ! Gn(x). (2.9c)

A proof by mathematical induction is given in [29]. (The constant of proportionality in (2.9c)
may be established by considering the spherical case). With this relation, the expression for
the exterior field can be transformed readily from terms involving singularity integrals to
terms involving external ellipsoidal harmonics.

For the n-th order ambient field, adding all contributions together, we obtain the following
representation for the exterior temperature field:

1 [(n-1)/21 [(n+ I-2m)/2]

To, = T + 47k I m Zk

(-_l)"-k+(2n - 4m - 2k + 3)! L(k)
22 4m-2k+3[(n - 2m - k + 1)!]2 (n-2m-2k+2) n-2m-k+l'

or in terms of singularity integrals,

[(n-1)/2] [(n+ I -2m)/2] f A

T~, = Tf + L( 2-2k+2) E fk I k2) dA, (2. 10b)
m= k= 4 1 lX - X'I

where

(k) kk 2 .. k(k) (2.10c)
L(n) n! · kk2 ... k -Xkl aXk



Temperature fields in and outside an isolated ellipsoid

n is odd

aG 2 0
3
G3

aG3 0
3
G4 a

5
G5

n is even

a2G2

a2G4

x, ax,2 Ax,

Fig. 1. The solution components in equation (2.10a). For a certain n, the solution contains terms above the
corresponding line, e.g. aG,, aG2, and 83

G3 are the solution components when n = 3.

We note here that the monopoles are excluded because we are interested in source-free
problems. The P(k)'s are the multipole moments, e.g., Pi(k) and P(k) are the thermal dipole and
quadrupole respectively. In Fig. 1, we show the components of the exterior solution in terms
of G, functions diagrammatically.

We derive an alternate form for the exterior solution which involves only a single
summation. First of all, we introduce the identity (see Appendix 1)

x-x l d A = + JEx x l d A
aE + bE a2) fE I x' dA,

Ix - I n + 2 x- x (n + 2) y ix - Xj

where n is a positive integer. With this identity, one can eventually convert all terms into the
terms appearing in the far-right diagonal of Fig. 1, e.g., a' G2 can be converted into the c'G,
and 3G3 terms. Thus, only a single summation describes the solution and one obtains the
following solution form for the exterior field:

1 (n-=)/2] (- 1)n(2n - 4m + 1)!
4itk lm=o 22 n-4m+[(n - 2m)!]2

n= l

185

n=3

n=5

n=2

n=4

n=6

where
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or in terms of singularity integrals,

[(n- 1)/2] f

T.,(x) = T(x) + L(2m ) 4znk,X - dA, (2.1 lb)

where

LPn) (1) (2.1lc)L(,) -n--n! Pkk 2 ...k Xk, ' ' a 8Xk1

[(n -1+ 2)/2]
Pklk2 k = E ZY p(k) (2.11d)

k=1

We are now in a position to examine the behavior of the exterior solution on the particle
surface and propose a solution form for the interior field. It has been shown in [29] that

[/2] ! ( 

"G. Z~- m. ~klk2 . k2mlk2mXk2m+, Xkn

Fm dtJ [n= ( t
2 + t) A( (sm) k k 

where F = x2/(a2 + t) + y2 /(b2 + t) + z2/(c2 + t) - 1, 6j is the Kronecker delta func-
tion, and the symbols a,, a2, a3 are used to represent a, b, c. At the summation index m, there
are n!/(2mm!(n - 2m)!) terms corresponding to all possible permutations of {kl . . . k } in
the representative term. When evaluated on the particle surface = 0, the exterior solution
with even(odd) n-th order ambient field is a polynomial in x of degree n with only even(odd)
degree terms. Therefore, we propose the following solution form for the interior field:

[(n- 1)/2]
Tin(x) = T'(x) + Y L(_2m) + TC, (2.12a)

m=O

where

(") = ( Pk. I ..En Xkl * * * Xkn X(2. 12b)L) n! P, ' k kXk, 
x k n '

Tc = D .kWk...kn ifn is even

= 0 if n is odd. (2.12c)

In (2.12c), Dk,k is a constant tensor depending on the shape parameters of the particle
(a, b, c) and the thermal conductivities of the system, k, and k2 . For even n, the temperature
at the center differs by T from that of the ambient field. The form for T follows from
linearity. We note that, without the introduction of the G, function, the interior solution is
an n-th degree polynomial of x with only even(odd) degree terms for even(odd) n-th order
ambient field.
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We close this section by one remark concerning the constraints for the multipole moments.
As shown in Appendix 2,

C,,k (k) = 0 for all k and r.

In the above equation, Ck, 2 kr, is the number associated with each Pk, 2 ...kr to describe how
many identical Pk 2, . kr exist due to the permutation symmetry, e.g. Cf2 = 2 and C23 = 6,
etc.. The result may be justified in the following way. Without loss of generality, we can set
p(k3 k zero by redefining the lower order tensor Pk( - k . Similarly, we may set k kn to be
zero, by redefining the lower order tensor p(,k-2 and so forth. In contrast, the multipole
moments in (2.11 a, b), in general, will not satisfy these constraints. Thus in certain compu-
tations, equation (2.10b) provides a more useful starting point.

3. Faxen relations

We are now in a position to derive the Fax6n relation for the n-th order moment, using the
recent developments presented in [26]. We cite some important concepts and results of that
paper for our purposes here. The interested reader may consult that paper for further details.

The n-th order moment of the thermal flux is defined as

k2 - kj F(x,) nxs, . k. . dS(xs)

= (k, - k2) Js VT(xs) ' nsk, Xs dS(x s)

= n(Xk1 . . . Xk T(x) dV(x)
n(k,- k2)v 

' x axk-

with Sp and Vp representing the surface and the volume of the particle respectively. Here, F
is the heat flux defined as -k 2VT. The divergence theorem has been used in the above
derivation to change the integral domain from particle surface to particle volume. The
moments of the thermal flux appear in the multipole expansion and the lower-order
moments appear directly as the physical quantities of interest in the calculations of the
effective transport properties.

We consider a reference temperature field T'(x) with the associated ambient field Tx'(x)
and the temperature field of interest T(x) with associated ambient field T ®(x). We start with
a modified form of Green's second identity [26],

(k, - k2) VT(x) VT'(x) dV(x) = - f VT'() T'(x) dV(x). (3.1)

The notation VP+ indicates explicitly that the integrand is evaluated using the exterior
solution. We now take T O' as an n-th order ambient field Wk ... kXk, . . Xk,, then

0T~x)dV(x)LHS of equation (3.1) = n(k, - k2) Wk,.. kJ Jvp Xk, Xk- x dV(x)

= Wk k, Pk,... kn

187
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From the previous section, we know that - k, V2T'(x) is identically

[(n-1)1/2 (_ )n-2m a a
myo (n - 2m)! aXkl6 aXk(- IEf(n-2m+l)(X - X') dA.

After changing the order of integration, the RHS of (3.1) becomes

[(n- 1)/2] (_ l)n-2m

m=O (n - 2m)! kln-2m fEf(n-2n+l)(X')

[Lv axk ax 5(x - x)T' (x) dV(x) dA(x')

We introduce the material tensors Z which fix the linear relations between the P's and W as
follows,

Pkl kn-2m = Z(kl...kn-2m,)(... ) Wl ... In, m = 0, 1, 2 ... [(n - 1/2],

and an identity from the theory of distributions,

a a 6(x - x')T (x) dV(x) = (- 1)- 2 T (x) =x,.
v

-
Xkl' ' aX, 2k OXkI . .. aXk_-2m

We then obtain an expression for P., , as

[(n- 1/2]
(n )! Z(kl kn-2m)(l ln) fE fn-2m+1) ... To(x) dA (3.2)

m=o (n - 2m)! aXk ''aXkn 2m

Thus the n-th order moment is given exactly by an integration, over the focal ellipse, of the
gradients of the ambient field.

The above relation may also be written in the symbolic operator form of Brenner and
Haber [23], which is particularly useful in situations where the ambient field is expressed
analytically. An identity derived by Kim and Arunachalam [29] (their equation (26)) applies
here as well, so that

- ( (2n)! ~ (k + n - 1)!D 2
k
- 2

fEn) (V)n- ' TdA n! (k - 1)!(2k + 2n - 2)! (V)- T(x)l

(2n)! (k + n - 1 )!2k -

n! k=l(k - 1)!(2k + 2n - 2)!

(2n)! (1 _ _n_-' (sinh D (V)- T (x'),=,
- 2 n! t a)} / J(V T 
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where

a2 a2 a2
D

2
= a2 2 + b2 2 + C2b

ax 2 ay2 aZ2

= / 2 + c 2V2

with

a2 a2
D = aE - + b a.

In the last step of the above derivation, the fact that the temperature field satisfies the
Laplace equation has been used to reduce D2 to 12. We thus obtain an expression for, P,
in terms of symbolic operators as

[(n-l)/2] (2n - 4m + 2)!

m=o (n - 2m)!(n - 2m + 1)!2n- 2m + 1

{ ' m (si~ (V 2T(x),. (3.3)

4. Solutions for linear and quadratic fields

In this section, we derive the explicit solutions for the linear and quadratic ambient fields,
i.e. problems with TX = G x and H: xx respectively. As mentioned in Section 2, we need
only solve simpler sub-problems and construct the full solution by summing all sub-
solutions. In addition, the cyclic symmetry between sub-solutions with respect to the depen-
dency on {a, b, c}, {x, y, z}, and {1, 2, 3} may be employed to achieve a further reduction
of the problem. For example, the solution for T = Gyy may be generated by cycling the
solution for T = Gxx. The linear and quadratic ambient fields may be expanded as follows:

Gx = Gxx + Gyy + Gz, (4.1a)

H:xx = ,(22 _ 2 _ 2) +H22 (x 2 + 22 - z2 ) + "' 
( _X2 _ y2 + 2 z 2 )

3 3 3

+ (H12 + H2,)xy + (H13 + H3 1)xz + (H2 3 + H3 2)yz. (4.lb)

It should be noted that in the above expansion we group the terms involving x2 , , z2 in such
a way that the grouping matches the functional form of the corresponding internal ellip-
soidal harmonic of degree 2 and furthermore we can utilize the cyclic symmetry of the
solutions for the first three ambient fields in the RHS of (4. lb). Thus we need only solve
problems with TX = x, 2x2 - y - z2, and xy respectively.

189



190 S.-Y. Lu and S. Kim

(1) T(x) = x:

If we choose E, (p) = u, then

T = x E,' (e)E' (L)E (v)
hk

The A' is thus determined and we obtain the following solution immediately,

To,(x) = A E (Q)E(ji)E] (v) + B. F1' (o)E,' )E, (v),

T.(x) = A1 E1' ()E (q)E' (v) + C,'E1 ()E,' ()EI (v),

where B and C, are constants which can be determined by (2.4a, b)(Note that To,,, approaches
TX because of the decay in the external ellipsoidal harmonics).

After some straightforward manipulations and the aid of the theorems by Miloh [28], we
obtain the following solution,

T.,(x) = T`(x) + 8irk(k 2 - k) a f(2) dA,
3(X d=t (k2 - k,) 2k x E 4rk, Ilx - x' dA

(a2 + t)A(t) abc

dt

T(x) = T ®(x) + x.
dt 2k,

fo (a2 + t)A(t) abc

As mentioned previously, the solutions for Tx = Gyy and Gzz may be obtained by the
mnemonic of cycling the suffices and the dependence on a, b, and c. We may construct the
full solution by summing the solutions of the sub-problems. The final solution is

ToX, (x) = To (x) - S V f(2) 1 - xI dA (x'), (4.2a)

T (x) = T'(x) - S' x, (4.2b)

where S is the strength of the dipole moment of the thermal disturbance produced by the
ellipsoid. We use a similar symbol S' in interior solution to reveal the similarity of the
solution form between interior and exterior solutions. The solution form is consistent with
the general results of Section 2.

The S and S' may be rewritten as M · G and M' G respectively because of the linearity
of S and S' to G. The components of the diagonal second-order tensors M and M' are listed
in Appendix 3. The M and M' are material tensors which depend only on the shape
parameters of the particle and the thermal conductivities of the system. Substituting (4.2a)
into (3.2), we obtain, after dropping G which is arbitrary, the Fax6n law:

S = M f f(2)(x')V Too(X)I, dA(x'),
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or in terms of symbolic operators,

S 3M {( a) sinhl} VT®(x)l=,.

(2) To = xy:

We first rewrite the ambient field in terms of the internal ellipsoidal harmonic as given by

E3 (Q)E23 Ou)E23 (v)
hek -h 2

with

E2
3 () = -

The expressions for To", and Te involve two undetermined constants B2 and C3 as before. We
also need the identity (Kim and Arunachalam [29], see Appendix 1)

z xq 1 dA = ( - 2) xajq(n+2) 1 dA, (n -1)
J I I ' (n I- x) ' (n+2)xjE Ix -x'I

which may be established using integration by parts. We then obtain the following solution,

x + 8k,(k, - k2)/15

Tn(x) = T (x) + dt 2k x

(k2 - k) + 2 2k, 2Jo (a2 t)(b2 + t)A(t) (a2 + b2)abc

Eaxa = 2 3) 4kl x - x' 2)

(k, - 2andt(kT - kT)+fox (a2 t)(b 2 t)A(t)
~(x) = T°°(x) + xy.

fo (a+t) (b 2 + t)A(t)k (a2 + b2)abc

(3) T = 2x - y2 z2:

-This case is much harder than the previous ones because of the coupling of two internal
ellipsoidal harmonics. Rewriting the ambient field in terms of internal ellipsoidal harmonics
and choosing

E2O) = 2 + (p, - 4)(h 2 + /c)

and

E20) = I2 + (P2 - 4)(h2 + k2),

191
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where p, and P2 are the roots of the following equation:

(h2 + k 2)p(p - 4) + 12h2k2 = 0,

we reach the following expression for T ®(x):

T(x) = AE2 (e)E2 (p)E2(v) + A2XE22 ()E22 ()E22(v) + C,

where A2X, A' and Cx are functions of the particle geometry parameters and are listed in
Appendix 1. For the present problem, we have four undetermined constants BU, B, C2,
and C. We obtain four equations by collecting terms for the two ellipsoidal harmonics in
the two boundary conditions.

By introducing a new identity, equation (A-2) in Appendix 1, we finally obtain the
following solution for Tou,,,:

To,,, (x) = T( + (dx) a+ 2 + d2 y JE Ix - x' dA + d3 E ( dA,

where d,, d2, and d3 are functions of the shape parameters of the particle and the thermal
conductivities of the system. We may eliminate the third term by using the identity

(n(n - 2)q"-4-n 2q-2) dA= a a 2 

IX d A a2E- + b2a E x_ x'

where n is positive integer. As mentioned in Section 2, we can generate the a2/az 2 term from
the 02/ax2 and alay2 terms to construct the full solution. Thus we attain our goal of
expressing the final solution in the form:

To,(x) = T ®(x) + Q:VV E 4rk 3)x' d

where Q is the thermal quadrupole.
The derivation for the interior solution is straightforward but tedious. After summing all

interior solutions of sub-problems, we obtain the following result:

Tin (x) = TO (x) + Q': xx + C': H.

Again, we can rewrite Q and Q' as N: H and N': H, respectively, because of the linearity of
Q and Q' to the tensor H. The N and N' are also material tensors. The quadrupole Q may
be deduced by the same procedure used for S. The results are as follows:

Q = N:IEf(3)VVT(x)lx=x, dA,

or in terms of symbolic operators,

15 - sinh D=
15 _N: VVT(x)lx=,.
2 XD D D 
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The explicit solution for T = Ukx ixjxk has also been derived by the authors using
procedures analogous to those employed for linear and quadratic fields. Again, the results
are consistent with the general pattern derived in Section 2. The interested reader may
contact the authors for details.
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Appendix 1

The derivations for some useful identities are presented here. The derivatives of q(x') with
respect to x' give

(a2 - c2) q"+ 2
xiq = - (A.1)

(n + 2) axi

We now deduce the following relation

xj 'q (a3 - c2) a xq dA.
X1X ,t dA = - dA.

Ix - x'I (n + 2) axi JEx - x'

In the derivation of the above relation, two facts have been used:
(1)

q(x', y')Ix= +aE(I--y'2/b)'I2 = q(x', y)ly,= =bE(I-x2/a2)I/2 = 0

(2)

a 1 a 1
axk Ix - x'l axk Ix - x l'

Repeating the same procedure one more time, we obtain

x;q dA g (a2 - c 2) qn+2

L Ix x'dA = ij (n + 2) E Ix- x'I dA

+ (a2- C2)( a 2 _ C2) 02 qn+4
(n + 2)(n + 4) axiOaxj E x - X dA.
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With the above identity, the following relations may be deduced:

E Ix - x' dA =
x2 1 dA

a1E E1bE I -xld
E qn-2 (

E q-2 _ (2/n)q dAIx - x'dA - n(n + 2) (aE2

+ 2 ) q+2 dA
E yY E I X -x dA.

Collecting like terms, we then reach the final result

E IX qn dA 
n E qn-2

n + 2 EI - x'IdA

(n + 2)2 (aE 2
+ b ) E I2 q dA.E Ty~ Ex I x _X, A

or in terms of the Gn function,

n (n + 2)2 a2

n+2 (n + 2)2 Ox

We now examine what happens to JE(x'nqn/lX - x'l)dA. Again, with (A.1) as a starting
equation, we apply the method of integration by parts repeatedly to obtain:

Xon"' 1 dA
f 'E q IX - X'I

a2E (n x'-2qm + 2 d -a Xn-l qm+2 d
(m + 2)(- 1) J I -x'I dA -x x - dA

4)2 f X'-4qm+4 dA
(m + 2)(m + 4) ( - 1)(n -- 3) E Ix . dA

- (2n -3) a+X - dA + 2 n-2q m + 4 dA)
-x (n Ix - x'l d+ -d A

/2 , a (xl)q ,+i
= Z CI/- kE '- n -dA, ifnisevenl=O,

or

(n+l )/2 a' (X)l-lqm+n+

=1 C T fE - dA, if n is odd,
1=1 o Ix - xI

b202 G, ,+I,
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where the C,'s are constants and functions of n, m, and aE. We obtain the results as listed
in (2.8) by applying the method of integration by parts repeatedly to those terms which still
involve x' in the integrand.

Appendix 2

(1) Taking the Laplacian of the singularity integral, we obtain

V2EI Af) ,I dA= Lf(n)V2(I ) dA
V2 Ix -x'l Ix - x '

= 4r fEf(n)(x - x') dA = 0

In the last step, we have made use of the fact that x, which is a point outside or on the
ellipsoid, never meets x', which is a point on the fundamental ellipse.

(2) Consider the following disturbance field:

1
TD(x) = Ck3...kk3kn axXk3. aX IX - XI dA.

(sum of i, k 3 ... k, E {1, 2, 3}) (A.3)

We define a set of new coefficients C(k)'P(k)' as given by

Ci'i...kti(ik '...k n = Ci.k3...kn Pik ... kn 3 c(k3...kntk3..kn.

(no sum on i, but sum on j)

Replacing the C(k)P(k) with the C(k)'P(k)' in (A.3), the disturbance field then becomes

Ci,k3... k k. Pi xk31... xk, Ef("+l X dA

k -2 2 -xi
- 3 iik...k., k ... 2 ( ) dA.

- 3 iik3 "knjk3kn X Xkn fE
f ( n+ l ) x - X'I

(sum of i, j, k)

We have proven that the Laplacian part of the above expression vanishes. Therefore, with
the new coefficient set, the disturbance field does not change. We note that the summation
of the new coefficient set, Ci(,kk) pk.,i( k, (sum on i), is just zero. We thus conclude that,
without loss of generality, we can set the summation of C,(k)3. k lp.k over i equal to zero
by redefining the lower-order tensor. An important special case of this concept is that we may
set the trace of the quadrupole, Q, = 0 (sum on i).
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Appendix 3

We present here the full information on the non-zero components of M, M', N, and N'.

87rk,(k 2 - k)
1il - / 1 c \

M2 2 =

Ml3 =

3 (a2 + t)A(t) ( 2 ) abc

87rk(k 2 - k,)

8(f I (k2 -2 k l)(b2 + t)A(t) (k2 - ) + abc

87kl (k 2 - k)

-3 dt 2k'
J° (C + t)A(t) (k 2 - abc

(k 2 - kIc) Jo ( 2 + t)A(t)

dt 2k '
Jo (b2 + t)A(t) (k - )abc

(k - k)f"o (2 + t)A(t)
M2t 2k'

fo ( 2 + t)A(t) (k 2 1)+abc
N(k2 - k) Ob + t)A(t)

N2222 = - C, (A 3 + AI 4

C, (A +tzC A 2 C6)

dtf f2 k '
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Cc A C I A= Nn C2
N 22 = g ( y + = N22 11,

N133 = |( I+AL 2 ) = N3311,Nl13 3~"2 _1 Ccz l

Cc a z C 3 a 2z 
0 4

N2233 = - A C + ) = N3322

AT C 1

2 : (k2 - k,) dt 2k,

fJ (a2 + t)(b2 + t)A(t) + (a2 + b2 )abc

cc 1
2 (k2 - k) dt 2k,

A (a2 + t)(C2 + t)A(t) + (a2 + c2 )abc

CC 1
2 f, (k 2 - kl) dt

(b2 + t)(c2 + t)A(t)

A2xB25 B

I 2 

2k,
(b2 + c2 )abc

xL

= N2112 = N2121 = N1 2 2 1 ,

= N3 1 13 = N3 13 1 = N1331,

= N3223 = N32 32 = N2 3 32 ,

N2222 A= - CC I + AfA 2 )

=A2z(-AI -- BJ A2Z-A-B2)J 

N3333 = -CC + = 1,
+ 2 ) = N2211

/1,3 ( + 1 12,) =N

zlz 2z, f' 

2233 Cc

v1 2 1 2 - -

N1313 =

N2 3 23 =
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/,I I- \

- '2 - l/ J (a2 +

dt
t)(b2 + t)A(t)

(k 2 -kl) dt 2k,

Ao (a2 + t)(b 2 + t)A(t) (a2 + b2)abc

dt
- (k2 - k); (a2 + t)(c2 + t)A(t)

(k2-k 1) dt 2k,
J (a2 + t)(C2 + t)A(t) + (a + c2)abc

- (k 2-) dt
2 (b2 + t)(c2 + t)A(t)

(k 2 - kl) dt 2k,

JA (b2 + t)(c 2 + t)A(t) (b2 + c2)abc

AA2A 

+ f2

(k2 - h2) +

(k2 - h2 ) +

Cf A XBI Is

l6 

C[x fA2yBj Is

6 L

A2~B2 J.\2

A+ B Js2)k

CC AlAli J
6 + s2 (k2

J,2 2

- h )+ ( fl
6 f

A2fB2 k2

with
s, = 6(pI - 4)(h 2 + k2), s2 = 6(P2 - 4)(h2 + k2),

16rk, (k 2 - k ) 2(k2 - k1)
C = , c15 3

C1 = 2k2 (h2 + SI) - (k2
- h2 )SI, C2 = 2k2 (h2 + s2) - (k2 - h2)s2,

C3 = 2(k 2 - h2)s, - k2 (h2 + S), C4 = 2(k 2 - h2)s2 - k2 (h2 + s2),

C5 = -k 2 (h 2 + s 1) - (k2 - h2 )s1, C6 = -k2(h2 + s2) - (k 2 - h2 )s2,

A1 = s 1(k
2 + sI), A2 = s2(k 2 + s2),

B, = (k 2 + s,)(h2 + s 1), B2 = (k 2 + s2 )(h2 + s2),

dt _-_ k,

2i = (k2 - k1) + 2
s2 (a 2 + 2 + t) 2A(t) (a + s2)abc'

- N2 1 12 - N121 = N12 2 1,

= N3 1 13 = N3131 N 3 3 1

= N2 2 3 = 232= 2332

c, =C' A2IA, s

C I {

C2 cct /A2y~t J5
2 = C AS6'z

,, , 
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, / dt
fS = I (a2 + s1 + t)2A(t)'

-, rdt

sf2 - L (a2 + s2 + t)2A(t)'

A 2XX 2_ 382 2x= - 3s
h2k2(s2 - ) ' 2 h2k2 (s2 - S'

-3(s 2 + h2) _ 3(s, + h2)
2y h2(k 2 - h2 )(s2 - sI) A2Y = h2 (k2 - h2 )(s2 - s)

3(s2 + k 2) -3(s, + k2)
k2(k

2 - h2 )( 2 - s)' 2 
2 k2(k 2 - h2 )(s2 - st)
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